fromV3 (1,2,3) 1 == (1,2,3,1)
map (\x -> x^2) (1,2,3,4) == (1,4,9,16)
map2 (<) (2,1,4,2) (3,2,1,6) == (True, True, False, True)
foldl (\elem acc -> acc + elem^2) 0 (2,4,1,2) == 25
foldr (::) [] (1,2,3,5) == [1,2,3,5]
v + w
add (2,4,1,-2) (3,-6,2,1) == (5,-2,3,-1)
v - w
sub (4,6,1,2) (3,-1,-4,4) == (1,7,5,-2)
-v
negate (2,-1,5,1) == (-2,1,-5,-1)
a*v
scale (3/2) (4,2,6,10) == (6,3,9,15)
v/a
divideBy (3/2) (3,12,6,9) == (2,8,4,6)
NaN/infinity warning: if a = 0
v dot w
The dot product of two vectors. Also called scalar product or inner product.
It links the length and angle of two vectors.
v dot w = |v|*|w|*cos(phi)
dot (1,2,2,3) (3,3,2,2) == 1*3 + 2*3 + 2*2 + 3*2 == 19
The length of a vector. Also known as magnitude or norm.
|v| = sqrt(v dot v)
length (2,4,1,2) == sqrt (2^2+4^2+1^2+2^2) == 5
The squared length. This is cheaper to calculate, so if you only need to compare lengths you can use this instead of the length.
|v|^2 = v dot w
lengthSquared (3,4,1,2) == 3^2+4^2+1^2+2^2 == 30
Normalizes a vector. This will give you a unit vector (e.g. with length 1) in the same direction as v
.
v/|v|
normalize (2,4,1,2) == (2/5,4/5,1/5,2/5)
NaN warning: if v = 0
A unit vector pointing from v
to w
(w - v)/|w - v|
directionFromTo (5,1,2,4) (7,5,3,6) == (2/5,4/5,1/5,2/5)
NaN warning: if v = w
Calculates the distance from v
to w
.
|v - w| = |w - v|
distance (7,5,3,6) (5,1,2,4) == 5
The squared distance. This is slightly faster.
|v - w|^2
distanceSquared (3,0,2,1) (0,2,4,1) == 17
The angle between two vectors. The angle is in radians.
acos((v dot w)/(|v|*|w|))
angle (-1,-1,2,0) (2,2,2,0) == pi/2 -- or 90°
NaN warning: if v = 0 or w = 0
module Vector4 exposing (..)
{-|
## Vector4
@docs Float4, Vec4
@docs fromV3, setX, setY, setZ, setW, getX, getY, getZ, getW, map, map2, foldl, foldr
@docs add, sub, negate, scale, divideBy
@docs dot, length, lengthSquared, normalize, directionFromTo, distance, distanceSquared, angle
-}
import Vector3 exposing (Vec3)
{-| -}
type alias Vec4 a =
( a, a, a, a )
{-| -}
type alias Float4 =
Vec4 Float
-- set, get, map
{-|
fromV3 (1,2,3) 1 == (1,2,3,1)
-}
fromV3 : Vec3 a -> a -> Vec4 a
fromV3 ( x, y, z ) w =
( x, y, z, w )
{-| -}
getX : Vec4 a -> a
getX ( x, _, _, _ ) =
x
{-| -}
getY : Vec4 a -> a
getY ( _, y, _, _ ) =
y
{-| -}
getZ : Vec4 a -> a
getZ ( _, _, z, _ ) =
z
{-| -}
getW : Vec4 a -> a
getW ( _, _, _, w ) =
w
{-| -}
setX : a -> Vec4 a -> Vec4 a
setX a ( x, y, z, w ) =
( a, y, z, w )
{-| -}
setY : a -> Vec4 a -> Vec4 a
setY a ( x, y, z, w ) =
( x, a, z, w )
{-| -}
setZ : a -> Vec4 a -> Vec4 a
setZ a ( x, y, z, w ) =
( x, y, a, w )
{-| -}
setW : a -> Vec4 a -> Vec4 a
setW a ( x, y, z, w ) =
( x, y, z, a )
{-|
map (\x -> x^2) (1,2,3,4) == (1,4,9,16)
-}
map : (a -> b) -> Vec4 a -> Vec4 b
map f ( x, y, z, w ) =
( f x, f y, f z, f w )
{-|
map2 (<) (2,1,4,2) (3,2,1,6) == (True, True, False, True)
-}
map2 : (a -> b -> c) -> Vec4 a -> Vec4 b -> Vec4 c
map2 f ( x1, y1, z1, w1 ) ( x2, y2, z2, w2 ) =
( f x1 x2, f y1 y2, f z1 z2, f w1 w2 )
{-|
foldl (\elem acc -> acc + elem^2) 0 (2,4,1,2) == 25
-}
foldl : (elem -> acc -> acc) -> acc -> Vec4 elem -> acc
foldl f start ( x, y, z, w ) =
f w (f z (f y (f x start)))
{-|
foldr (::) [] (1,2,3,5) == [1,2,3,5]
-}
foldr : (elem -> acc -> acc) -> acc -> Vec4 elem -> acc
foldr f start ( x, y, z, w ) =
f x (f y (f z (f w start)))
-- math
{-| `v + w`
add (2,4,1,-2) (3,-6,2,1) == (5,-2,3,-1)
-}
add : Float4 -> Float4 -> Float4
add ( x1, y1, z1, w1 ) ( x2, y2, z2, w2 ) =
( x1 + x2, y1 + y2, z1 + z2, w1 + w2 )
{-| `v - w`
sub (4,6,1,2) (3,-1,-4,4) == (1,7,5,-2)
-}
sub : Float4 -> Float4 -> Float4
sub ( x1, y1, z1, w1 ) ( x2, y2, z2, w2 ) =
( x1 - x2, y1 - y2, z1 - z2, w1 - w2 )
{-| `-v`
negate (2,-1,5,1) == (-2,1,-5,-1)
-}
negate : Float4 -> Float4
negate ( x, y, z, w ) =
( -x, -y, -z, -w )
{-| `a*v`
scale (3/2) (4,2,6,10) == (6,3,9,15)
-}
scale : Float -> Float4 -> Float4
scale a ( x, y, z, w ) =
( a * x, a * y, a * z, a * w )
{-| `v/a`
divideBy (3/2) (3,12,6,9) == (2,8,4,6)
NaN/infinity warning: if a = 0
-}
divideBy : Float -> Float4 -> Float4
divideBy a ( x, y, z, w ) =
( x / a, y / a, z / a, w / a )
{-| `v dot w`
The **dot product** of two vectors. Also called **scalar product** or **inner product**.
It links the length and angle of two vectors.
`v dot w = |v|*|w|*cos(phi)`
dot (1,2,2,3) (3,3,2,2) == 1*3 + 2*3 + 2*2 + 3*2 == 19
-}
dot : Float4 -> Float4 -> Float
dot ( x1, y1, z1, w1 ) ( x2, y2, z2, w2 ) =
x1 * x2 + y1 * y2 + z1 * z2 + w1 * w2
{-| The length of a vector. Also known as magnitude or norm.
`|v| = sqrt(v dot v)`
length (2,4,1,2) == sqrt (2^2+4^2+1^2+2^2) == 5
-}
length : Float4 -> Float
length v =
sqrt (dot v v)
{-| The squared length. This is cheaper to calculate,
so if you only need to compare lengths you can use this instead of the length.
`|v|^2 = v dot w`
lengthSquared (3,4,1,2) == 3^2+4^2+1^2+2^2 == 30
-}
lengthSquared : Float4 -> Float
lengthSquared v =
dot v v
{-| Normalizes a vector. This will give you a unit vector (e.g. with length 1) in the same direction as `v`.
`v/|v|`
normalize (2,4,1,2) == (2/5,4/5,1/5,2/5)
NaN warning: if v = 0
-}
normalize : Float4 -> Float4
normalize v =
divideBy (length v) v
{-| A unit vector pointing from `v` to `w`
`(w - v)/|w - v|`
directionFromTo (5,1,2,4) (7,5,3,6) == (2/5,4/5,1/5,2/5)
NaN warning: if v = w
-}
directionFromTo : Float4 -> Float4 -> Float4
directionFromTo a b =
normalize (sub b a)
{-| Calculates the distance from `v` to `w`.
`|v - w| = |w - v|`
distance (7,5,3,6) (5,1,2,4) == 5
-}
distance : Float4 -> Float4 -> Float
distance a b =
length (sub a b)
{-| The squared distance. This is slightly faster.
`|v - w|^2`
distanceSquared (3,0,2,1) (0,2,4,1) == 17
-}
distanceSquared : Float4 -> Float4 -> Float
distanceSquared a b =
lengthSquared (sub a b)
{-| The angle between two vectors. The angle is in radians.
`acos((v dot w)/(|v|*|w|))`
angle (-1,-1,2,0) (2,2,2,0) == pi/2 -- or 90°
NaN warning: if v = 0 or w = 0
-}
angle : Float4 -> Float4 -> Float
angle a b =
let
r =
dot a b / (length a * length b)
in
if r >= 1 then
0
else
acos r